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Introduction. Consider a body on whose boundary the displacements, forces, or some other loading conditions are 

prescribed. As a result, each point of the body will be displaced into a new position. There are two fundamentally different 

possibilities here: 1) The displacement field will be such that the body undergoes only rigid-body rotation and translation and 

2) in addition to displacement of the body as a rigid entity, the shape of the body will be deformed and in the general case the 

volume will change, i.e., definite deformations will occur in the body. 

The problem of describing deformations is one of the basic problems in the mechanics of solids. Different definitions 

are now used for the very concept of deformations, measures of deformations, and the corresponding mechanical 

interpretations. They are all of a local character. For example, the definition of the nonlinear Cauchy's strain tensor involves 

analysis of the change in the distances between pairs of infinitesimally close points. In addition, these pairs lie in a 

neighborhood of a given point. It is to this point that the corresponding tensor refers. Other deffmitions are also of a local 

character and depend on investigation of the kinematics of infinitesimal material volumes of the body [1, 2]. Comparing 

theoretical constructions to experiments shows that in the theory all "measurements" of deformations occur on an infinitesimal 

base. 

In some cases a more general treatment of this concept is of interest: By deformations we shall mean any quantitative 

characteristics which describe the difference between the actual field of displacements of points of the body and a set of fields 

of displacements of the same body as a rigid entity. This approach admits nonlocal definitions, when formations "are measured" 

on a finite base and their quantitative characteristics refer not to points but rather to the entire body as a whole. 

The idea of such an approach appeared in analysis of a specific problem [3]. Let the deformation of the body be 

conducted in a plane radial matrix. Figures la and b display the initial and final, respectively, configurations of the body. How 

should the deformation of the body as a whole in the process of transformation from the initial to the final configuration be 

estimated? This can be done as follows. Let the loading parameter be the displacement of the lower boundary h of the body 

(Fig. 1). We now consider the body to be absolutely rigid and give it a virtual downwards displacements by an amount h. As 

a result of such a displacement, the configuration of the body will no longer correspond to the form of the matrix. The degree 

of mismatch can be estimated in terms of the volume of the mismatch regions S h (Fig. lc). Regions of mismatch cannot exist 

in a real process. For this reason, a real process can be interpreted as a process in which the mismatch regions S h somehow 

become "smeared" inside the converging channel. Hence it follows that even the deformations of the body as whole can be 

estimated as the volume of the mismatch regions with respect to the initial volume of the body, i.e., here integral quantitative 

estimates can be obtained before solving the problem. In [3, 4] this device was employed in order to analyze the flow of free- 

flowing material under conditions of localization of displacements. It enabled not only giving a quantitative description of the 

process but also obtaining quantitative estimates. 

We shall now attempt to formalize this technique. Let S be the initial configuration of the body and L the boundary 

of the body. Let the region S transform as a result of deformation into S t and the boundary L into L r We introduce the 

following notations: S O = St') St, S- = S~SO, S + = St\S 0 (Fig. 2). If we ignore the internal mechanism of the change in shape, 

then from the external standpoint deformation results in the fact that the parts S- move away from the region S and parts S + 

are added to the region S. For this reason, the process of deformation of the body as a whole can be judged according to the 

volume of these regions, their mutual arrangement, and the shape itself. For example, for the case shown in Fig. 2 it is evident 

that the body is compressed along the direction AB and is stretched along the direction CD. 

Here there arises a fundamental circumstance. If rigid-body rotation and translation are imposed on the new 

configuration of the body, then the internal deformation process will not change as a result. However, the mismatch regions 

Novosibirsk. Translated from Prildadnaya Mekhanika i Tekhnicheskaya Fizika, No. 6, pp. 98-105, November- 
December, 1993. Original article submitted December 23, 1992. 

0021-8944/93/3406-0835512.50 �9 1994 Plenum Publishing Corporation 835 



b 

Fig. 1 

and their volumes and arrangement also depend quite strongly on this rigid-body displacement. For this reason, the method 

of [4] cannot be used directly in the general case. We must find something that is common to all situations, something that does 

not depend on the displacements and rotations of  a body as a rigid entity. This can be done by different methods. 

First, we consider defmitions of  deformations which refer to a point of  the body but can be "measured" on a nonlocal 

base. Next we consider a variational definition of deformations. Finally, we consider an extension of  the variational approach 

to the entire body as a whole. For convenience, we confine our attention of the case of  a planar deformation. 

1. In tegra l  M e a s u r e s  o f  Deformat ion.Consider  a body S bounded by a contour L. At a definite time the displacements 

Ul = Ul (X1, X2), U2 = U2 (X1, X2), (1.1) 

where x 1 and x 2 are Cartesian coordinates of  a material point before deformation, occur in this body; U 1 and u 2 are the 

components of  the displacement vector u. The equations (1.1) contain complete information about what it will be natural to 

term a deformation, but they also contain additional information that has no bearing on deformations. It is obvious that this 

additional information refers to rotation and displacement of  the body as a rigid body. The problem is to separate this 

information from the equalities (1.1). 

We proceed as follows. First, let the displacements (1.1) be realized in the body. Next, we impose on the field (1.1) 

rigid-body rotation by an angle o~ and a displacement by the vector {C 1, C2}. As a result we obtain the new field: 

fil(xx, x2) = ul cos a - u2 sin a + xl (cos a - 1) - x 2 s i n  a + Cx, 

fi2(xl, x2) = ul sin ~ + u2 cos a + x l s in  ~ + x 2 ( c o s  ~ - 1) +C2.  (1.2) 

Thus any prescribed field of  displacements {u 2, u2} engenders an infinite set of fields of  displacements {/~1, U2}' The elements 

of the set fill the three-dimensional space {C 1, C 2, ~}. From the standpoint of  the theory of deformations they all must be 

indistinguishable. In other words we must find something common to each of the elements (1.2). 

Two different approaches are possible here. In any case it will be necessary to give a comparison to classical 

definitions. For this reason we start with the variant which corresponds to the nonlinear C a u c h y - G r e e n  strain tensor. 

The equations (1.2) describe a vector projection. In a rotation the length of a vector remains unchanged. For this 

reason, if we set C 1 = 0, C 2 = 0, in Eq. (1.2), then 

( ~  + x~) 2 + (h2 + x2) 2 = (ul + x0 2 + (u2 + x9 2. (1.3) 

If  the squared length is de~gnated as the norm II u + r II, r = {x 1, x2}, then we can say that all points of  the set (1.2), lying 

on the axis C 1 = 0, C 2 = I J, have the common invariant II u + r II. 
Now the problem is to eliminate from Eq. (1.2) the constants C 1 and C 2 which appear in an additive manner in the 

equations. For this reason, the equations can be differentiated and in this manner the constants can be eliminated. This operation 

gives instead of the two equations (1.2) the following four equations (i, j = 1, 2): 

0 (kl  + xO 0 (ul + xl )  o (u2 + x2) 
- -  --  c o s  ct - -  s i n  ct - -  

Oxi ox~ Ox~ 

O(ul + xD O(u2 + x2) 0 (~2 + x 9  = s i n  a - -  + c o s  a - -  
o~j oxi oxj 

, ( 1 . 4 )  
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Fig. 2 

For Eq. (1.4) the method (1.3) gives two invariants: 

o~, = ~ ( u l + x , )  + ( u 2 + x ~ )  , 

Ox2 = ~ (u~ + xl) + (u2 + x2) �9 

In the four equations (1.4) only one parameter a appears on the right-hand side. For this reason, there must exist a third 

invariant. Since both derivatives 0(u + r)/Ox i transform according to the rules of vector projection, we can take as the third 

invariant their scalar product 

O(u+r) o ( u + r ) _ O ( u l + x t )  O(ul+xl) 0(u2+.x2) O(u2+x2) 

Any other invariants, for example, the vector product 

o (u + r) 0 (u + r) 
- -  X - -  

OXt d X 2  ' 

will be functions of the above-indicated three invariants. 

The chosen invariants immediately lead to a nonlinear Cauchy-Green  strain tensor eij: 

Oxl + kOxl) + ~Oxl)  ~ - 1 ,  

0,2 1 
2~,, = 2 ~ + ~ox,) + iox,) ~ - 1, 

OUl OU2 dUl dUl Ou2 du2 0 (u + r) O (la + r) 

Thus the Cauchy-Green  strain tensor is associated with the procedure of eliminating additive constants with the help 

of the differentiation operation. It is obvious that this is not the only method of elimination. 

We now consider integration, which is in some sense the inverse procedure, We place the origin of coordinates inside 

the body and integrate the first equation in Eqs. (1.2) over Xl: 

Xl x 1 x 1 

f (~1 + xl) axl = cos ~ f (ul + x~) axl - sin ~ f (u2 + x2) dx~ + C~x~. (1.5) 
0 0 0 

Now the constant C 1 can be eliminated very simply: for example, Eq. (1.5) is divided by Xl 2, Eq. (1.2) is divided by x 1, and 

one equation is subtracted from the other. Proceeding in the same manner with the second equation in Eqs. (1.2) and integrals 
over x2, we obtain the following four relations: 

~ = cos ~w~ - sin awn, ~,~ = sin awxj + cos aw2j 
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2 ( , ,  + ~,______) 2 (u~ + x J  . 
w~j= xj 

Here it is assumed that all integration segments belong to the domain of u. The expressions wij were chosen so that the 

conditions wij = aij would correspond to the affme transformation 

ul + xl  = a n x l  + al2x2, Us + x2 = a21xt + a22x2, 

where aij = const. 

It is obvious that the pairs {Wll, w21 } and {w12, w22 } will be vectors. Hence, the following objective characteristics 

can be used as measures of deformations: 

.r.  = ~ + ~1,  .r~ = ~2  + ~d~, J~2 = .,,,~,,~ + w . w ~ .  

We are now ready to make a generalization. Let L 1 and L 2 be linear operators, which transform any constant C into 

L1C = 0. Then LI(U + r), L2(u + r) will be vectors and the following characteristics can be taken as operator measures of 

deformations: 

It z l  (u + 011 = ILl (ul + x,)]2 + tLx (u2 + x2) f ,  

II Z~ (u + r)I[ = [Z~ (u, + x 0  ]5 + [& (us + x2) f ,  
L1 (u + r)/--2 (u + r) = L1 (ul + xl)/-a (ul + Xl) + Z 1 (ll2 -I.- X2) Z 2 (u 2 dr" X2). 

As noted above, the operators L i = O/Ox i correspond to the nonlinear Cauchy-Green strain tensor. For media with 

microstructure deformation measures can be constructed on the basis of more complicated operators, for example, L i = O/ax i 

+ xa2/axi 2 (x is a parameter with the dimension of length), and so on. 

2. Variational DeFinition of Deformations.Thus, only prescribed field of displacements (1.1) engenders a set of fields 

(1.2). As noted above, all elements of this set must be indistinguishable for any measures of deformations. In the case of the 

classical definition and the approach studied in Sec. 1, invariant characteristics belonging to all elements of the set (1.2) are 

calculated. An entirely different approach is possible: Rather than seeking the invariants (1.2), an element which is in some 

sense distinguished (the base element) is separated from Eq. (1.2). This element itself is now regarded as a characteristic of 

the deformation process. The requirement of objectivity here indicates only one thing: The base field of displacements must 

not depend on the starting element from Eq. (1.2). Both the field itself {u 1, u2} and any other field from Eq. (1.2) can be the 

initial element. The displacements should be the same in each case. 

The base field is characterized by the fact that it no longer contains additional rigid-body rotations and displacements. 

For this reason, for the given field it is now possible to give an objective procedure for making quantitative and qualitative 

estimates of the type indicated above (see Fig. 2) [5]. 
Thus in this method the changes in body shape will be characterized by a definite field of displacements. This makes 

it difficult to compare to existing measures of deformations, because the latter are o f  a local character. A bridge can be 

constructed only for the case when the body is small, i.e., it is a small neighborhood of the point (Xl ~ x2~ 
Thus, let such a body have a field of displacements (1.1). The displacements characterized the propensity of points of 

the body to change places. If the body is rigid, then the displacements can be made to be zero by choosing appropriate constants 

C 1, C 2, and o~: a i -= 0. If the body deforms, then this cannot be done. 
It is natural to take aS the base situation a situation in which the propensity of points of the body to change places is 

minimized. 
We choose an angle o~ such that the field t~ 1, a 2 (x 1 , x 2) would be as close as possible to a constant. Then, by adjusting 

the constants C i this field can be made to approach zero. We have no grounds to give preference to any one coordinate x I or 

x 2. For this reason, we choose the simplest and most symmetric norm: 
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(oaq' 
n : + OxQ + ~Ox2} + ~Oxl) ~ min. 

(2.1) 

The condition OH/2et = 0 leads to the result 

0ill Off2 
Ox2 Ox 1 

Hence 

t g  ~ = - U21 - -  u12 
Ull + U22 + 2 ~ (2.2) 

Ofi..._Ll = (1 + u u )  (2 + u l l  + u22) + u2t (u21 - "12) _ 1,  

Oxl q(un - ut2) 2 + (2 + un + u22) 2 
dill  u12 (2  + u n  + u22) + (1 + u22) (u21 - ul2) 

OX2 ~](U21 -- ttl2) 2 + (2 + Ull + U22) 2 

Ofi2 --(1 + UlI) (U2I -- UI2) + U21 (2 + Ull + U22) 

Oxt '/(u21 - u12) 2 + (2 + uH + u22) 2 ' 

Off2 --U12(U21-- U12 ) + (1 + U22 ) ( 2  + Utl + //22) 

Ox2 4(u21 - ul2) 2 + (2 + ull + u22~ 

(2.3) 

where uij = Oui/Ox j. The base field itself has the form 

ui = 
oa, 

m x ~ .  

The components (2.3) form a symmetric tensor of rank 2. In the notation of [2, p. 90] they are identical to the components 

of  the tensor (Gij xl/2 - 5ij), where 6ij is the Kronecker delta function. 

Here it is necessary to underscore the following. For finite strain tensors the mechanical interpretation of the tensor 

components presents a definite difficulty. For the components of small deformations 

l /0. ,  
+ 

Oxr ) 

there are no problems, whereas for nonlinear tensors of large deformations-everything becomes much more  complicated. 

We can pose the following question: Does there exist a finite-strain tensor whose components have precisely the same 

mechanical meaning as the components of  an infinitesimal-strain tensor? According to the equations (2,3), the answer is yes: 

such a tensor exists and it is unique. In this sense the tensor (2.3) has a definite advantage over other finite-strain tensors. In 

addition, the tensor (2.3) satisfies the variational principle (2.1). The latter circumstance makes it possible to switch to nonlocal 

generalizations. Here  it is convenient to, introduce the concept of a reference body. 

3. Me thod  of  Refe rence  Fields. Let the reference body be absolutely rigid and have the same shape as the 

experimental body before a deformation. The field of  displacements of  the real body has the form (1.1), and the reference field 

is 

u ~ = x l ( c o s [ 3 -  1 ) - x 2 s i n l 3 + B 1 ,  u ~  I ) + B 2  (3.1) 

where/3, B1, and B 2 are constants. For which values of  the constants j3 and B 1 is the displacement field of  the reference body 

closest to the field of  real displacements (1.1)? Since we are talking about the closeness of  two vector fields, a norm for 

estimating it must be introduced. It is natural to take a norm which actually transforms into the norm (2.1) as the dimensions 

of the body decrease to the vicinity of  the point (Xl ~ x20). This requirement is satisfied by the following norm (which, by the 

way, is the simplest norm): 

f f  [(ul - u~ 2 + (u2 - u~ ~ ] a s  - ,  rain. (3.2) 
S 
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Here S is the region occupied by the body prior to deformation, i.e., the domain of the functions (1.1) and (3.1). We confine 

our attention to the case when this region is f'mite, so that all integrals exist and are f'mite. 

All calculations simplify if the origin of coordinates is placed at the center of gravity of the body and the coordinate 

axes are directed along the principal axes of the section: 

f f  xdS=O,  f f  ydS=O,  /m= f f  xydS=O. 
S S ,s 

Substituting Eq. (3.1) into Eq. (3.2) and equating to zero the derivatives with respect to B 1, B 2, and 13 we obtain 

' f f  �89 B1 ~" -~ Ul (xlx2) dS, B2 = u2 (xix2) dS, 
,$ s 

f f (x1"2 - x2ua) as f f u •  as 

tg 1~ = f f (xe, x + x2u2 + x~ + x~) as f f (u + r) r as'  
$ s 

(3.3) 

where S is the section area. Thus in order to determine the base displacements from the initial equalities (1.1) it is necessary 

to switch to Eqs. (1.2), setting C i = - B  i and t~ = -/3, or the displacement field {u 1, u2} is the base field, if for it all integrals 

(3.3) vanish. 

In a local approach it is not important whether we operate with the values of the displacements in the entire 

neighborhood of the point (xl ~ x2 ~ or only on the boundary of such a neighborhood (a locally smooth displacement field is 

always affine). In a nonlocal approach this is no longer the case. However, all constructions can also be easily made for the 

case when only the values of the displacements on the boundary are considered. Here, the norm (3.2) can be replaced by the 

following norm: 

f [(ul - u~ 2 + (u2 - u~ 2 ] dl .-,, rain (3.4) 
L 

where L is the boundary and dl is an element of the boundary. If the coordinate axes are chosen so that 

f xx dl= O, f x2 dl= O, f xlx2 d / - - O ,  (3 .5)  
L L L 

then 

tg ~ = 

,f if Bt=-s uldl, B2 =-~ u2dl, 
L L 

f (xlu: - x 2 u t )  d l  f u x r d l  

L L 

f (x~ut + x2uz + x~ + x~) al = - f (u ~- r) r at 
L L 

(3.6) 

where L < oo is the length of the boundary. 
We now compare the obtained global formulas to the local formulas. For this we assume that the region S contracts 

to the point (Xl ~ x2~ Then Eqs. (3.3) and (3.6) give 

u21- u12 . (3 .7)  B l = u l ( x  ~176  B 2 = u 2 ( x  ~176  t g l 3 = 2 + u n + u 2 ~  

The derivation of Eqs. (3.7) employed a restriction on the law of contraction to the point (Xl ~ x2~ 

in the case (3.3) 

in the case (3.6) 

f x~dS - f ~dS,  
$ s 

f ~ d l -  f ~dl .  
I. l ,  
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It is easy to show that the result (3.7) corresponds to the principle 

[O'u' - u~l 2 "* m i n ,  

,,-,k j 
i.e., it is actually identical to Eq. (2.1). Thus the nonlinear finite-strain tensor (2.3) corresponds to the nonlocal equations (3.3) 

or (3.6). 
The introduction of the concepts of a reference body makes it possible to take another step in determining nonlocal 

measures of deformations. The norm (3.4) was employed in order to understand which rigid-body rotation and translation is 

contained in the initial displacement field. For this reason, the displacement field of the reference body can be regarded as an 

approximation to the real field in the class (3.1) according to the norm (3.4) or, in other words, the equations (3.3) and (3.6) 

make it possible to separate from Eq. (1.1) rigid-body rotation and translation. But there is nothing to stop us from taking the 

next step and thereby separating the general affine deformation. 

Let the reference body coincide with the initial body prior to deformation and assume that it undergoes an arbitrary 

uniform affine deformation 

u~ = bnxt + bl2x2 + At, u~ = b21x~ + b22x2 + A2, (3.8) 

where ui* are components of the displacements of the reference body, and bij and A i are arbitrary constants. We choose the 

constants in Eq. (3.8) so that the field (3.8) is as close as possible to the prescribed field (1.1). The norm 

f f  [(ul - u~) 2 + (u2 - u~)2l aS --, rain, 
S 

gives the following result: The field closest to the field (1.1) in the class of affine fields (3.8) is 

f f  um dS f f  uix2 as f f  ul aS 
* S - - X 2 +  s 

ui = f f x~ dS xt + s f f  x~ ds s 
S S 

f f  .2xl as f f  ~2x2 as f f  u2 as 
* S 1t2 : XI q" s s 2 x~ + - -  

f f x~ dS f f .r2 dS S 
S S 

(3.9) 

Here, as before, the origin of coordinates lies at the center of gravity of the section; Ox 1 and Ox 2 are the principal axes of the 
section S. 

We can proceed similarly, given only information about the displacements on a contour. Let 

f [(ut - u~) 2 + (u2 - u~) 2 ] dl --, rain. 

Then the field closest to the initial field will be 

f um dl 
* L 

U 1 = X 1 + - -  

f X21 dl 
L 

f u2xl dl 
* L 

1A 2 = X t "4" - -  

f 
L 

f utx2 dl f ul dl 

L X24_ L 
- f  x2 dl L ' 
L 

f u2x2 at f ul ,it 
L X 2 +  L 

L 

(3.10) 

The origin of the coordinates and the axes are chosen so that the equations (3.5) would be satisfied. 

We note that now translation and rotation of the body as a rigid entity can be determined in two ways: directly from 

the formulas (3.3) and (3.6) or first separating the general affme transformation (3.9) and (3.10) and then separating from this 

transformation rotation and translation according to Eqs. (3.3) and (3.6). It is easy m show that both methods give the same 
results, i.e., these operations are interchangeable within the constructions made. 
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Thus from the real and, in the general case, nonlinear field of displacements it is possible to separate a rigid-body 

rotation, translation, and, moreover, a definite affine transformation. The latter circumstance makes it possible to follow another 

relation between the local and nonlocaI approaches to the concept of deformations. Indeed, locally any transformation can be 
regarded as affme. For this reason, if it is known that the entire body is subjected to an affine transformation, then the 
condition of smallness of an elementary volume becomes superfluous for determining the components of the deformations. In 
this case the tensor can be referred to the entire body as a whole. 

The equations (3.9) and (3.10) make it possible to obtain the same result in the general case also. Here, any local 

formulas for finite deformations can be used in order to determine the tensor. For example, the equations (2.3), where we must 

make the substitution 

f f u,x  as 
dui s 

a:,j y.f  ds 
S 

In solving a number of problems the approaches described above are convenient not only for obtaining integral estimates [4, 

5] but also for formulating the determining equations [6]. 
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